ee-μ\mu 散射

现在我们考虑一个与 ee+μμ+e^{-}e^{+}\rightarrow \mu^{-}\mu^{+} 相类似的过程:ee-μ\mu 散射,即:eμeμe^{-}\mu^{-}\rightarrow e^{-}\mu^{-}。其费曼图为:

其跃迁矩阵元为:

iM=ie2q2uˉ(p1)γμu(p1)uˉ(p2)γμu(p2)(1)\begin{aligned} i\mathcal{M} &= \frac{ie^2}{q^2}\bar{u}(p_1')\gamma^{\mu}u(p_1)\bar{u}(p_2')\gamma_{\mu}u(p_2) \tag{1} \end{aligned}

对自旋求平均,由于 memμm_e \ll m_{\mu},可以令 me=0m_e=0

14spinsM2=e44q4tr[(p1+me)γμ(p1+me)γν]tr[(p2+mμ)γμ(p2+mμ)γν]=8e4q4[(p1p2)(p1p2)+(p1p2)(p1p2)mμ2(p1p1)](2)\begin{aligned} \frac{1}{4}\sum_{spins}|\mathcal{M}|^2 &= \frac{e^4}{4q^4}\mathrm{tr}[(\cancel p_1+m_e)\gamma^{\mu}(\cancel p_1 + m_e)\gamma^{\nu}]\mathrm{tr}[(\cancel p_2'+m_{\mu})\gamma_{\mu}(\cancel p_2 + m_{\mu})\gamma_{\nu}]\\ &= \frac{8e^4}{q^4}[(p_1\cdot p_2')(p'_1\cdot p_2) + (p_1\cdot p_2)(p'_1\cdot p_2') - m_{\mu}^2(p_1\cdot p_1')]\\ \end{aligned}\tag{2}

我们在质心系中写出各个粒子的四动量:

得到:

p1p2=p1p2=k(E+k)p1p2=p1p2=k(E+kcosθ)p1p1=k2(1cosθ)q2=2p1p1=2k2(1cosθ)(3)\begin{aligned} &p_1\cdot p_2 = p_1'\cdot p_2' = k(E+k)\\ &p_1'\cdot p_2 = p_1 \cdot p_2' = k(E+k\cos\theta)\\ &p_1\cdot p_1' = k^2(1-\cos\theta)\\ &q^2 = -2p_1\cdot p_1'=-2k^2(1-\cos\theta)\\ \end{aligned}\tag{3}

代入 (4)(4) 得到:

14spinsM2=8e44k4(1cosθ)2[k2(E+kcosθ)2+k2(E+k)2mμ2k2(1cosθ)]=2e4k2(1cosθ)2[(E+kcosθ)2+(E+k)2mμ2(1cosθ)](4)\begin{aligned} \frac{1}{4}\sum_{spins}|\mathcal{M}|^2 &= \frac{8e^4}{4k^4(1-\cos\theta)^2}[k^2(E+k\cos\theta)^2 + k^2(E+k)^2 - m_{\mu}^2k^2(1-\cos\theta)]\\ &= \frac{2e^4}{k^2(1-\cos\theta)^2}[(E+k\cos\theta)^2 + (E+k)^2 - m_{\mu}^2(1-\cos\theta)] \end{aligned}\tag{4}

得到微分散射截面为:

dσdΩ=M264π2(E+k)2=α22k2(E+k)2(1cosθ)2((E+k)2+(E+kcosθ)2mμ2(1cosθ))(5)\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{|\mathcal{M}|^2}{64\pi^2(E+k)^2}\\ &=\frac{\alpha^2}{2k^2(E+k)^2(1-\cos\theta)^2}((E+k)^2 + (E+k\cos\theta)^2 - m_{\mu}^2(1-\cos\theta))\\ \end{aligned}\tag{5}

在高能极限下,令 mμ0,Ekm_{\mu} \rightarrow 0 ,E \rightarrow k,有:

dσdΩ=α22Ecm2(1cosθ)2(4+(1+cosθ)2)\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{\alpha^2}{2E_{cm}^2(1-\cos\theta)^2}(4+(1+\cos\theta)^2)\\ \end{aligned}

注意当 θ0\theta\rightarrow 0 时,有:

dσdΩ1θ4(6)\frac{d\sigma}{d\Omega} \propto \frac{1}{\theta^4} \tag{6}

表明此时的微分散射截面存在奇异性。

交叉对称性

我们注意到过程 e+eμ+μe^{+}e^{-}\rightarrow \mu^+\mu^-eμeμe^{-}\mu^{-}\rightarrow e^{-}\mu^- 是相当类似的,从费曼图上来看:

过程 e+eμ+μe^{+}e^{-}\rightarrow \mu^+\mu^-eμeμe^{-}\mu^{-}\rightarrow e^{-}\mu^- 之间的对称性称为 交叉对称性 crossing symmetry:对于一个包含动量为 pp 的初态正粒子的过程,和一个动量为 k=pk = -p 的末态反粒子的过程是等价的,即:

M(ϕ(p)+)=M(+ϕˉ(k))(7)\mathcal{M}(\phi(p)+\cdots\rightarrow \cdots) = \mathcal{M}(\cdots \rightarrow \cdots + \bar{\phi}(k)) \tag{7}

注意,ϕˉ\bar{\phi}ϕ\phi 的反粒子,且 k=pk = -p。因为正粒子与反粒子均要求:p0,k0>0p^0,k^0>0,所以并不存在一个值 pp,使得 ϕ(p)\phi(p)ϕˉ(k)\bar{\phi}(k) 都是物理的。

这个关系用费曼图可以表示为:

我们现在来举例说明这个关系的正确性:根据费曼规则:对于 ϕ\phi 是 Klein-Gordon 玻色子的情况是容易得到的;ϕ\phi 是 Dirac 费米子时,跃迁矩阵元 M2|\mathcal{M}|^2 中出现:

sus(p)uˉs(p)=p+m=(km)=svs(p)vˉs(p)(8)\begin{aligned} \sum_{s} u^s(p)\bar{u}^s(p) = \cancel{p} + m = -(\cancel{k} - m) = - \sum_{s} v^s(p)\bar{v}^s(p) \tag{8} \end{aligned}

因此,我们只需要规定:在变换一个费米子时需要额外加上负号。那么就消去 (8)(8) 式子中的负号。

Mandelstam 变量

对于一个 a+bc+da+b\rightarrow c+d 的过程,我们可以通过定义 Mandelstam 变量 Mandelstam variables 来简化计算:

s=(p+p)2=(k+k)2t=(kp)2=(kp)2u=(kp)2=(kp)2(9)\begin{aligned} s = (p+p')^2 = (k+k')^2\\ t = (k-p)^2 = (k'-p')^2\\ u = (k'-p)^2 = (k-p')^2\\ \end{aligned}\tag{9}

如此,对于 e+eμ+μe^{+}e^{-}\rightarrow \mu^{+}\mu^{-} 过程

为了简化计算,我们在 me,mμ0m_{e},m_{\mu}\rightarrow 0 下讨论问题,此时:

s=2pp=2kkt=2kp=2kpu=2kp=2kp(10)\begin{aligned} &s = 2p\cdot p' = 2k\cdot k'\\ &t = -2k\cdot p = -2k'\cdot p'\\ &u = -2k'\cdot p = -2k\cdot p'\\ \end{aligned}\tag{10}

可得

14spinsM2=8e4q4[(pk)(pk)+(pk)(pk)]=8e4s2[(t2)2+(u2)2](11)\begin{aligned} \frac{1}{4}\sum_{spins}|\mathcal{M}|^2 &= \frac{8e^4}{q^4}[(p'\cdot k)(p\cdot k') + (p\cdot k)(p'\cdot k')]\\ & = \frac{8e^4}{s^2}[(\frac{t}{2})^2 + (\frac{u}{2})^2] \end{aligned}\tag{11}

对于 eμeμe^{-}\mu^{-}\rightarrow e^{-}\mu^{-} 过程

s=2p1p2=2p1p2t=2p1p1=2p2p2u=2p1p2=2p1p2(12)\begin{aligned} &s = 2p_1\cdot p_2 = 2p_1'\cdot p_2'\\ &t = -2p_1\cdot p_1' = -2p_2\cdot p_2'\\ &u = -2p_1'\cdot p_2 = -2p_1\cdot p_2'\\ \end{aligned}\tag{12}

可得

14spinsM2=8e4q4[(p1p2)(p1p2)+(p1p2)(p1p2)]=8e4t2[(u2)2+(s2)2](13)\begin{aligned} \frac{1}{4}\sum_{spins}|\mathcal{M}|^2 &= \frac{8e^4}{q^4}[(p_1\cdot p_2')(p'_1\cdot p_2) + (p_1\cdot p_2)(p'_1\cdot p_2')]\\ & = \frac{8e^4}{t^2}[(\frac{u}{2})^2 + (\frac{s}{2})^2] \end{aligned}\tag{13}

利用交叉对称性我们也能从对 e+eμ+μe^{+}e^{-}\rightarrow \mu^{+}\mu^{-} 过程的研究得到 eμeμe^{-}\mu^{-}\rightarrow e^{-}\mu^{-} 过程的信息。我们只需要将 e+e^{+}μ+\mu^{+} 改为对应的反粒子,并赋予一个相反的四动量,用费曼图表示为:

pp,kkp' \rightarrow -p', k' \rightarrow -k'

我们发现 (10)(10) 中的 Mandelstam variables 发生如下变化:

s2pp=2kkt2kp=2kpu2kp=2kp(14)\begin{aligned} &s \rightarrow -2p\cdot p' = -2k\cdot k'\\ &t \rightarrow -2k\cdot p = -2k'\cdot p'\\ &u \rightarrow 2k'\cdot p = 2k\cdot p'\\ \end{aligned}\tag{14}

这正对应 eμeμe^{-}\mu^{-}\rightarrow e^{-}\mu^{-} 的 Mandelstam variables 发生如下变化:

sttuus(15)\begin{aligned} &s \rightarrow t\\ &t \rightarrow u\\ &u \rightarrow s\\ \end{aligned}\tag{15}

对应我们只需要将 (11)(11) 式的结果作 (15)(15) 式的代换就能得到 (13)(13)

14spinsM2=8e4t2[(s2)2+(u2)2]\frac{1}{4}\sum_{spins}|\mathcal{M}|^2 = \frac{8e^4}{t^2}[(\frac{s}{2})^2 + (\frac{u}{2})^2]

222\rightarrow 2 过程只含有一个虚粒子时,我们总可以用 s,u,ts,u,t 之一表示这个虚粒子的动量平方,这正好对应如下三种 channel

分别对应 s-channel,t-channel,u-channel 这正是 222\rightarrow 2 过程最低阶(tree-level)的三个费曼图。

s,t,us,t,u 具有以下一般性质:

s+t+u=(p+p)2+(pk)2+(pk)2=3p2+p2+k2+k2+2p(pkk)=3p2+p2+k2+k22p2=i=14mi2(16)\begin{aligned} s + t + u &= (p+p')^2 + (p-k)^2 + (p-k')^2\\ &= 3p^2 +p'^2 + k^2 + k'^2 + 2p\cdot(p'-k-k')\\ &= 3p^2 +p'^2 + k^2 + k'^2 - 2p^2\\ &= \sum_{i=1}^{4}m_i^2\\ \end{aligned}\tag{16}

康普顿散射

接下来我们考虑 康普顿散射 compton scatteringeγeγe^{-}\gamma\rightarrow e^{-}\gamma

其包括如下两个费曼图:

得到跃迁矩阵元为:

iM=uˉ(p)(ieγμ)ϵμ(k)i(p+k+m)(p+k)2m2(ieγν)ϵν(k)u(p)+uˉ(p)(ieγν)ϵν(k)i(pk+m)(pk)2m2(ieγμ)ϵμ(k)u(p)=ie2ϵμ(k)ϵν(k)uˉ(p)(γμ(p+k+m)γν(p+k)2m2+γν(pk+m)γμ(pk)2m2)u(p)(17)\begin{aligned} \mathcal{i\mathcal{M}} =& \bar{u}(p')(-ie\gamma^{\mu})\epsilon^*_{\mu}(k')\frac{i(\cancel p+\cancel k+m)}{(p+k)^2-m^2}(-ie\gamma^{\nu})\epsilon_{\nu}(k)u(p)\\ &+ \bar{u}(p')(-ie\gamma^{\nu})\epsilon_{\nu}(k)\frac{i(\cancel p- \cancel k'+m)}{(p-k')^2-m^2}(-ie\gamma^{\mu})\epsilon^*_{\mu}(k')u(p)\\ =& -ie^2\epsilon_{\mu}^*(k')\epsilon_\nu(k)\bar{u}(p')(\frac{\gamma^{\mu}(\cancel p+\cancel k+m)\gamma^{\nu}}{(p+k)^2-m^2} + \frac{\gamma^{\nu}(\cancel p- \cancel k'+m)\gamma^{\mu}}{(p-k')^2-m^2})u(p) \end{aligned}\tag{17}

我们可以做一些化简:

(p+k)2m2=2pk(pk)2m2=2pk(18)\begin{aligned} &(p+k)^2 - m^2 = 2p\cdot k\\ &(p-k')^2 - m^2 = -2p\cdot k'\\ \end{aligned}\tag{18}

另外,有:

(p+m)γνu(p)=(2pνγν(pm))u(p)=2pνu(p)(19)\begin{aligned} (\cancel{p} + m)\gamma^{\nu}u(p) &= (2p^{\nu} - \gamma^{\nu}(\cancel{p}-m))u(p)\\ &= 2p^{\nu}u(p)\\ \end{aligned}\tag{19}

那么可以将跃迁矩阵元写为:

iM=ie2ϵμ(k)ϵν(k)uˉ(p)(γμkγν+2γμpν2pk+γνkγμ+2γνpμ2pk)u(p)(20)i\mathcal{M} = -ie^2\epsilon_{\mu}^*(k')\epsilon_\nu(k)\bar{u}(p')(\frac{\gamma^{\mu}\cancel{k}\gamma^{\nu} + 2\gamma^{\mu}p^{\nu}}{2p\cdot k}+\frac{-\gamma^{\nu}\cancel{k}'\gamma^{\mu} + 2\gamma^{\nu}p^{\mu}}{-2p\cdot k'})u(p)\tag{20}

接下来,我们要将上式平方,并对所有可能的电子自旋与光子极化态求平均。类似电子旋量有关系:

uˉ(p)u(p)=p+m\sum \bar{u}(p)u(p) = \cancel{p} + m

极化矢量存在关系:

polarizationsϵμϵνgμν(21)\sum_{polarizations} \epsilon^*_{\mu}\epsilon_{\nu} \rightarrow -g_{\mu\nu} \tag{21}

不过 (21)(21) 式只有与跃迁矩阵元 Mμ\mathcal{M}^{\mu} 点积在一起时才有意义,即下式是严格成立的:

polarizationsϵμϵνMμMνgμνMμMν\sum_{polarizations} \epsilon^*_{\mu}\epsilon_{\nu}\mathcal{M}^{\mu}\mathcal{M}^{\nu*}\rightarrow -g_{\mu\nu}\mathcal{M}^{\mu}\mathcal{M}^{\nu*}

利用 (20)(21)(20)(21) 式得到:

14M2=e44gμρgνσtr((p+m)(γμkγν+2γμpν2pk+γνkγμ+2γνpμ2pk)   (p+m)(γσkγρ+2γρpσ2pk+γρkγσ+2γσpρ2pk)=e44(I(2pk)2+II(2pk)(2pk)+III(2pk)(2pk)+IV(2pk)2)(22)\begin{aligned} \frac{1}{4}\sum|\mathcal{M}|^2 &= \frac{e^4}{4}g_{\mu\rho}g_{\nu\sigma}\mathrm{tr}((\cancel{p}' +m)(\frac{\gamma^{\mu}\cancel{k}\gamma^{\nu} + 2\gamma^{\mu}p^{\nu}}{2p\cdot k}+\frac{-\gamma^{\nu}\cancel{k}'\gamma^{\mu} + 2\gamma^{\nu}p^{\mu}}{-2p\cdot k'})\\ &\qquad\qquad\quad\ \ \ \cdot (\cancel{p} +m)(\frac{\gamma^{\sigma}\cancel{k}\gamma^{\rho} + 2\gamma^{\rho}p^{\sigma}}{2p\cdot k}+\frac{-\gamma^{\rho}\cancel{k}'\gamma^{\sigma} + 2\gamma^{\sigma}p^{\rho}}{-2p\cdot k'})\\ &=\frac{e^4}{4}(\frac{\mathrm{I}}{(2p\cdot k)^2} + \frac{\mathrm{II}}{(2p\cdot k)(2p \cdot k')} + \frac{\mathrm{III}}{(2p\cdot k')(2p \cdot k)} + \frac{\mathrm{IV}}{(2p \cdot k')^2}) \end{aligned}\tag{22}

其中 I,II,III,IV\mathrm{I,II,III,IV} 都是一些矩阵的迹:

I=tr[(p+m)(γμkγν+2γμpν)(p+m)(γνkγμ+2γμpν)]II=tr[(p+m)(γμkγν+2γμpν)(p+m)(γμkγν2γνpμ)]III=tr[(p+m)(γνkγμ2γνpμ)(p+m)(γνkγμ+2γμpν)]IV=tr[(p+m)(γνkγμ2γνpμ)(p+m)(γμkγν2γνpμ)](23)\begin{aligned} \mathrm{I} &= \mathrm{tr}[(\cancel{p}' + m)(\gamma^{\mu}\cancel{k} \gamma^{\nu} + 2\gamma^{\mu}p^{\nu})(\cancel{p} + m)(\gamma_{\nu}\cancel{k} \gamma_{\mu} + 2\gamma_{\mu}p_{\nu})]\\ \mathrm{II} &= \mathrm{tr}[(\cancel{p}' + m)(\gamma^{\mu}\cancel{k} \gamma^{\nu} + 2\gamma^{\mu}p^{\nu})(\cancel{p} + m)(\gamma_{\mu}\cancel{k}' \gamma_{\nu} - 2\gamma_{\nu}p_{\mu})]\\ \mathrm{III} &= \mathrm{tr}[(\cancel{p}' + m)(\gamma^{\nu}\cancel{k}' \gamma^{\mu} - 2\gamma^{\nu}p^{\mu})(\cancel{p} + m)(\gamma_{\nu}\cancel{k} \gamma_{\mu} + 2\gamma_{\mu}p_{\nu})]\\ \mathrm{IV} &= \mathrm{tr}[(\cancel{p}' + m)(\gamma^{\nu}\cancel{k}' \gamma^{\mu} - 2\gamma^{\nu}p^{\mu})(\cancel{p} + m)(\gamma_{\mu}\cancel{k}' \gamma_{\nu} - 2\gamma_{\nu}p_{\mu})]\\ \end{aligned}\tag{23}

通过作交换 k,kk,-k'I,IV\mathrm{I},\mathrm{IV} 的值交换;而 II,III\mathrm{II},\mathrm{III} 的值容易看出是相同的,因此我们只需要去计算 I\mathrm{I}

我们首先考虑 I\mathrm{I}

I=tr[(p+m)(γμkγν+2γμpν)(p+m)(γνkγμ+2γμpν)](24)\begin{aligned} \mathrm{I} &= \mathrm{tr}[(\cancel{p}' + m)(\gamma^{\mu}\cancel{k} \gamma^{\nu} + 2\gamma^{\mu}p^{\nu})(\cancel{p} + m)(\gamma_{\nu}\cancel{k} \gamma_{\mu} + 2\gamma_{\mu}p_{\nu})]\\ \end{aligned}\tag{24}

其可以展开为 1616 项,但考虑含有奇数次 γ\gamma 矩阵的项的迹为零(一共 88 项),如此。另外 88 项需要进行计算,例如:

tr(pγμkγνpγνkγμ)=tr(γμpγμkγνpγνk)=tr((2p)k(2p)k)=tr(4pk(2pkkp))=8pktr(pk)=32(pk)(pk)\begin{aligned} &\mathrm{tr}(\cancel{p}' \gamma^{\mu}\cancel{k}\gamma^{\nu}\cancel{p} \gamma_{\nu}\cancel{k} \gamma_{\mu})\\ =&\mathrm{tr}(\gamma_{\mu}\cancel{p}' \gamma^{\mu}\cancel{k}\gamma^{\nu}\cancel{p} \gamma_{\nu}\cancel{k} )\\ =& \mathrm{tr}((-2\cancel{p}')\cancel{k}(-2\cancel{p})\cancel{k} )\\ =&\mathrm{tr}(4\cancel{p}'\cancel{k} (2p\cdot k - \cancel{k}\cancel{p}))\\ =&8 p\cdot k\mathrm{tr}(\cancel{p}'\cancel{k})\\ =&32(p\cdot k)(p\cdot k') \end{aligned}

上述推导中用到了 kk=k2=0\cancel{k}\cancel{k} = k^2 = 0

最终可得:

I=16(4m22m2pp+4m2pk2m2pk+2(pk)(pk))(25)\mathrm{I} = 16(4m^2 - 2m^2p\cdot p' + 4m^2p\cdot k - 2m^2 p'\cdot k + 2(p\cdot k)(p'\cdot k)) \tag{25}

将 Mandelstam variables 代入得到:

s=(p+k)2=2pk+m2=2pk+m2t=(pp)2=2pp+2m2=2kku=(kp)2=2kp+m2=2kp+m2\begin{aligned} & s = (p+k)^2 = 2p\cdot k +m^2 = 2p'\cdot k' +m^2\\ & t = (p'-p)^2 = -2p\cdot p' +2m^2 = -2k\cdot k'\\ & u = (k'-p)^2 = -2k'\cdot p + m^2 = -2k\cdot p' + m^2\\ \end{aligned}

得到:

I=16(2m4+m2(sm2)12(sm2)(um2))(26)\mathrm{I} = 16(2m^4 + m^2(s-m^2) - \frac{1}{2}(s-m^2)(u-m^2)) \tag{26}

通过代换 kkk'\leftrightarrow -k,即 sus \leftrightarrow u,得到:

IV=16(2m4+m2(um2)12(sm2)(um2))(27)\mathrm{IV} = 16(2m^4 + m^2(u-m^2) - \frac{1}{2}(s-m^2)(u-m^2)) \tag{27}

类似的,计算得到:

II=III=8(4m2+m2(sm2)+m2(um2))(28)\begin{aligned} &\mathrm{II} = \mathrm{III} =-8(4m^2 + m^2(s-m^2)+ m^2(u-m^2))\\ \end{aligned}\tag{28}

将计算出的 (26)(27)(28)(26)(27)(28) 代入 (22)(22),最终得到:

14M2=2e4[pkpk+pkpk+2m2(1pk1pk)+m4(1pk1pk)2](29)\frac{1}{4}\sum |\mathcal{M}|^2 = 2e^4[\frac{p\cdot k'}{p\cdot k} + \frac{p\cdot k}{p\cdot k'} + 2m^2(\frac{1}{p\cdot k}-\frac{1}{p\cdot k'}) + m^4(\frac{1}{p\cdot k}-\frac{1}{p\cdot k'})^2]\tag{29}

我们现在在实验系中计算康普顿散射的截面。此时,电子是静止的,光子的频率为 ω\omega

对于康普顿散射来说,根据四动量守恒,可以计算得到末态光子的频率:

1ω1ω=1m(1cosθ)(30)\frac{1}{\omega'}-\frac{1}{\omega} = \frac{1}{m}(1-\cos\theta) \tag{30}

得到:

pk=mωpk=mω(31)p\cdot k = m\omega \quad p\cdot k' = m\omega' \tag{31}

代入 (29)(29),得到:

14M2=2e4(ωω+ωω+2m(1ω1ω)+m2(1ω1ω)2)=2e4(ωω+ωω+2(cosθ1)+(cosθ1)2)=2e4(ωω+ωωsin2θ)(32)\begin{aligned} \frac{1}{4}\sum |\mathcal{M}|^2 &= 2e^4(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} + 2m(\frac{1}{\omega}-\frac{1}{\omega'}) + m^2(\frac{1}{\omega}-\frac{1}{\omega'})^2)\\ &= 2e^4(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} + 2(\cos\theta-1) + (\cos\theta-1)^2)\\ &= 2e^4(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta)\\ \end{aligned}\tag{32}

另外,(30)(30) 可以显式地写为:

ω=ω1+ωm(1cosθ)(33)\omega' = \frac{\omega}{1 + \frac{\omega}{m}(1-\cos\theta)} \tag{33}

为了计算散射截面,我们要对相空间进行积分:

d3k(2π)312ωd3p(2π)312E(2π)4δ(4)(p+kpk)=d3k(2π)314ωE2πδ(E+ωωm)=dΩω2dω(2π)314ωE2πδ(m2+p2+ωωm)=dΩωdω(2π)314E2πδ(ω+m2+ω2+ω22ωωcosθωm)=dΩ(2π)3ω4E2π11+ωωcosθE=dcosθ2πω4E11+ωωcosθE=18πdcosθωm+ω(1cosθ)=18πdcosθω2mω\begin{aligned} &\int \frac{d^3k'}{(2\pi)^3} \frac{1}{2\omega'} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E'} (2\pi)^4 \delta^{(4)}(p'+k'-p-k)\\ =& \int \frac{d^3k'}{(2\pi)^3} \frac{1}{4\omega'E'} 2\pi \delta(E' + \omega' - \omega -m)\\ =& \int \frac{d\Omega \omega'^2d\omega'}{(2\pi)^3} \frac{1}{4\omega'E'} 2\pi \delta(\sqrt{m^2 + \bm{p}'^2} + \omega' - \omega -m)\\ =& \int \frac{d\Omega \omega'd\omega'}{(2\pi)^3} \frac{1}{4E'} 2\pi \delta(\omega' + \sqrt{m^2 + \omega^2 + \omega'^2 - 2\omega\omega'\cos\theta} - \omega -m)\\ =& \int \frac{d\Omega}{(2\pi)^3} \frac{\omega'}{4E'} 2\pi \frac{1}{|1 + \frac{\omega' - \omega \cos\theta}{E'}|}\\ =& \int \frac{d\cos\theta}{2\pi} \frac{\omega'}{4E'} \frac{1}{|1 + \frac{\omega' - \omega \cos\theta}{E'}|}\\ =& \frac{1}{8\pi} \int d\cos\theta \frac{\omega'}{m+\omega(1-\cos\theta)}\\ =& \frac{1}{8\pi}\int d\cos\theta \frac{\omega'^2}{m\omega} \end{aligned}

令两粒子的相对速度为 11,得到微分散射截面的表达式:

dσdcosθ=18π12m12ωω2mω2e4(ωω+ωωsin2θ)=e4ω216πm2ω2(ωω+ωωsin2θ)\begin{aligned} \frac{d\sigma}{d\cos\theta} &= \frac{1}{8\pi} \frac{1}{2m}\frac{1}{2\omega} \frac{\omega'^2}{m\omega} 2e^4(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta)\\ &= \frac{e^4\omega'^2}{16\pi m^2\omega^2}(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta)\\ \end{aligned}

将精细结构常数 α=e2/4π\alpha = e^2/4\pi 作替换,得到:

dσdcosθ=πα2m2(ωω)2(ωω+ωωsin2θ)(34)\frac{d\sigma}{d\cos\theta} = \frac{\pi \alpha^2}{m^2}(\frac{\omega'}{\omega})^2(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - \sin^2\theta)\tag{34}

这称为 Klein-Nishina 公式 Klein-Nishina formula


现在讨论康普顿散射在低能与高能下的行为。

首先,对于低能情况,取 ω0\omega \rightarrow 0,有:ωω1\frac{\omega}{\omega'} \rightarrow 1。代入 (34)(34) 式,得到:

dσdcosθ=πα2m2(1+cos2θ)(35)\frac{d\sigma}{d\cos\theta} = \frac{\pi \alpha^2}{m^2}(1 + \cos^2\theta) \tag{35}

总截面为:

σtotal=8πα23m2(36)\sigma_{total} = \frac{8\pi \alpha^2}{3m^2} \tag{36}

对于高能情况,我们在质心系中讨论问题:

此时有:

pk=ω(E+ω)pk=ω(E+ωcosθ)E2=ω2+m2(37)p\cdot k = \omega(E+\omega)\quad p\cdot k' = \omega(E+\omega\cos\theta)\quad E^2 = \omega^2 + m^2 \tag{37}

以及:

ω,ωm,θπ\omega,\omega' \gg m,\quad \theta \approx \pi

(37)(37) 代入 (29)(29) 得到:

14M22e4pkpk=2e4E+ωE+ωcosθ\begin{aligned} \frac{1}{4}\sum |\mathcal{M}|^2 &\approx 2e^4\frac{p\cdot k}{p\cdot k'}\\ &= 2e^4 \frac{E+\omega}{E+\omega\cos\theta}\\ \end{aligned}

在质心系中的微分散射截面成为:

dσdcosθ=18π12E12ωω2π4(E+ω)2e4E+ωE+ωcosθ2πα22m2+s(1+cosθ)(38)\begin{aligned} \frac{d\sigma}{d\cos\theta} &= \frac{1}{8\pi} \frac{1}{2E}\frac{1}{2\omega} \frac{\omega}{2\pi\cdot 4(E+\omega)} 2e^4 \frac{E+\omega}{E+\omega\cos\theta}\\ &\approx \frac{2\pi\alpha^2}{2m^2+s(1+\cos\theta)}\\ \end{aligned}\tag{38}

我们可以作一些近似,由于 sm2s\gg m^2,得到:

dσdcosθ2πα2s(1+cosθ)(39)\frac{d\sigma}{d\cos\theta} \approx \frac{2\pi\alpha^2}{s(1+\cos\theta)}\tag{39}

但该式相比 (38)(38) 而言在 θ=π\theta = \pi 时具有奇异性,因此为了计算总散射截面,我们需要修改以下积分限。令:

s(1+cosθ)=2m2cosθ=2m2s1(40)s(1+\cos\theta) = 2m^2 \rightarrow \cos\theta = \frac{2m^2}{s} - 1 \tag{40}

因此,总散射截面成为:

σtotal=1+2m2s1dcosθdσdcosθ=1+2m2s1dcosθ2πα2s(1+cosθ)=2πα2s1+2m2s1dcosθ1+cosθ=2πα2sln(sm2)(41)\begin{aligned} \sigma_{total} &= \int_{-1+\frac{2m^2}{s}}^{1} d\cos\theta\frac{d\sigma}{d\cos\theta}\\ &= \int_{-1+\frac{2m^2}{s}}^{1} d\cos\theta \frac{2\pi\alpha^2}{s(1+\cos\theta)}\\ &= \frac{2\pi\alpha^2}{s} \int_{-1+\frac{2m^2}{s}}^{1} \frac{d\cos\theta}{1+\cos\theta}\\ &= \frac{2\pi\alpha^2}{s} \ln (\frac{s}{m^2}) \end{aligned} \tag{41}

正负电子对湮灭

利用交叉对称性,可以将康普顿散射与正负电子对湮灭关联起来:

e+e2γe^{+}e^{-} \rightarrow 2\gamma

用费曼图表示为:

在康普顿散射中,我们只需要做以下代换:

pp1pp2kk1kk2(42)p \rightarrow p_1\quad p' \rightarrow -p_2\quad k\rightarrow -k_1 \quad k'\rightarrow k_2 \tag{42}

代入 (29)(29) 得到跃迁矩阵元为:

14M2=2e4[p1k2p1k1+p1k1p1k2+2m2(1p1k1+1p1k2)m4(1p1k1+1p1k2)2](43)\frac{1}{4}\sum |\mathcal{M}|^2 = -2e^4[\frac{p_1\cdot k_2}{p_1\cdot k_1} + \frac{p_1\cdot k_1}{p_1\cdot k_2} + 2m^2(\frac{1}{p_1\cdot k_1}+\frac{1}{p_1\cdot k_2}) - m^4(\frac{1}{p_1\cdot k_1}+\frac{1}{p_1\cdot k_2})^2]\tag{43}

在质心系中进行计算:

p1k1=E(Epcosθ)p1k2=E(E+pcosθ)(44)p_1\cdot k_1 = E(E-p\cos\theta)\quad p_1\cdot k_2 = E(E+p\cos\theta) \tag{44}

代入 (43)(43) 式,得到:

14M2=2e4[E+pcosθEpcosθ+EpcosθE+pcosθ+2m2(1E(Epcosθ)+1E(E+pcosθ))m4(1E(Epcosθ)+1E(E+pcosθ))2]=4e4[E2+p2cos2θm2+p2sin2θ+2m2m2+p2sin2θ2m4(m2+p2sin2θ)2]\begin{aligned} \frac{1}{4}\sum |\mathcal{M}|^2 &= -2e^4[\frac{E+p\cos\theta}{E-p\cos\theta} + \frac{E-p\cos\theta}{E+p\cos\theta} + 2m^2(\frac{1}{E(E-p\cos\theta)}+ \frac{1}{E(E+p\cos\theta)})\\ &\quad -m^4(\frac{1}{E(E-p\cos\theta)} + \frac{1}{E(E+p\cos\theta)})^2]\\ &= -4e^4 [\frac{E^2+p^2\cos^2\theta}{m^2+p^2\sin^2\theta} + \frac{2m^2}{m^2+p^2\sin^2\theta} - \frac{2m^4}{(m^2+p^2\sin^2\theta)^2}] \end{aligned}

对应的微分散射截面为:

dσdcosθ=2πα2s(Ep)[E2+p2cos2θm2+p2sin2θ+2m2m2+p2sin2θ2m4(m2+p2sin2θ)2]\frac{d\sigma}{d\cos\theta} = \frac{2\pi\alpha^2}{s}(\frac{E}{p}) [\frac{E^2+p^2\cos^2\theta}{m^2+p^2\sin^2\theta} + \frac{2m^2}{m^2+p^2\sin^2\theta} - \frac{2m^4}{(m^2+p^2\sin^2\theta)^2}]

在高能极限下,有 EpmE \approx p \gg m,因此上式成为:

dσdcosθ2πα2s1+cos2θsin2θ\frac{d\sigma}{d\cos\theta} \rightarrow \frac{2\pi\alpha^2}{s}\frac{1+\cos^2\theta}{\sin^2\theta}